Safety Precautions

Ursalink will not shoulder responsibility for any loss or damage resulting from not following the instructions of this operating guide.

- The device and transmitter must not be disassembled or remodeled in any way.
- Please clarify your application environment before deployment so that the device can function well.
- The device is not intended to be used as a reference sensor, and Ursalink will not should responsibility for any damage which may result from inaccurate readings.
- Do not place the device close to hot objects or in direct sunlight.
- Do not place the device where the temperature is below/above the operating range, places that are out of measuring range and with high magnetic field.
- Make sure electronic components do not drop out of the enclosure while opening.
- When closing the lid, make sure the lid is fitted the right way, so that the enclosure is properly sealed.
- When installing the battery, please install it accurately, reversely or with wrong model.
- The device must never be subjected to shocks or impacts.

Declaration of Conformity

Ursalink EM500-SWL is in conformity with the essential requirements and other relevant provisions of the CE, FCC, and RoHS.

© 2017-2020 Xiamen Ursalink Technology Co., Ltd.
All rights reserved.
All information in this guide is protected by copyright law. Whereby, no organization or individual shall copy or reproduce the whole or part of this user guide by any means without written authorization from Xiamen Ursalink Technology Co., Ltd.

For assistance, please contact Ursalink technical support:
Email: helpdesk@ursalink.com
Tel: 86-592-5023060
Fax: 86-592-5023065

Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Doc Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 7, 2020</td>
<td>V 1.0</td>
<td>Initial version</td>
</tr>
</tbody>
</table>
Contents

1. Overview ... 4
 1.1 Description ... 4
 1.2 Features ... 4
 1.3 Specifications ... 4
 1.4 Dimensions (mm) ... 5
2. Hardware Introduction ... 5
 2.1 Packing List .. 5
 2.2 Product Overview .. 6
3. Sensor Connection with EM500 ... 6
4. Sensor Installation .. 7
 4.1 Liquid Level Sensor Installation ... 7
 4.2 EM500 Installation ... 8
 4.2.1 Wall Mounting ... 8
 4.2.2 Pole Mounting .. 8
 4.2.3 DIN Rail Mounting ... 9
5. Turn ON/OFF the Sensor ... 9
 5.1 Turn ON/OFF via Smartphone APP .. 9
 5.2 Turn ON/OFF via PC Software ... 11
 5.3 Turn ON/OFF via Button ... 12
6. Sensor configuration ... 12
 6.1 Configuration via Smartphone APP ... 12
 6.1.1 Read Configuration ... 13
 6.1.2 Write Configuration ... 13
 6.1.3 Template Settings ... 14
 6.2 Configuration via PC .. 16
 6.2.1 Read Configuration ... 16
 6.2.2 Write Configuration ... 16
 6.2.3 Upgrade ... 17
 6.2.4 Template and Reset ... 18
7. Sensor Parameters (for App and PC) .. 19
 7.1 LoRa WAN Settings ... 19
 7.1.1 Basic Settings-OTAA ... 19
 7.1.2 Basic Settings-ABP .. 20
 7.1.3 Channel Settings ... 22
 7.2 Device Settings .. 23
 7.2.1 General ... 23
 7.2.2 Data Calibration ... 24
 7.2.3 Threshold .. 24
8. Sensor Management via Ursalink Cloud .. 25
 8.1 Ursalink Cloud Registration ... 25
 8.2 Add a Ursalink LoRaWAN Gateway .. 25
 8.3 Add EM500-SWL to Cloud ... 26
1. Overview

1.1 Description

EM500-SWL is an outdoor environment monitoring sensor mainly used to measure liquid level data through wireless LoRa network. EM500-SWL device is battery powered and designed for multiple mounting ways. It is equipped with NFC (Near Field Communication) and can easily be configured by a smartphone or a PC software.

Sensor data are transmitted in real-time using standard LoRaWAN protocol. LoRaWAN enables encrypted radio transmissions over long distance while consuming very little power. The user can obtain sensor data and view the trend of data change through Ursalink Cloud or through the user’s own Network Server.

1.2 Features

- Large measurement range for liquid level measurement
- Up to 11km communication range
- Easy configuration via NFC
- Standard LoRaWAN support
- Ursalink Cloud compliant
- Low power consumption with 19000mAh replaceable battery

1.3 Specifications

<table>
<thead>
<tr>
<th>LoRaWAN</th>
<th>EU433/CN470/IN865/RU864/EU868/US915/AU915/KR920/AS923</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx Power</td>
<td>20dBm</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>-147dBm @300bps</td>
</tr>
<tr>
<td>Mode</td>
<td>OTAA/ABP Class A</td>
</tr>
<tr>
<td>Antenna</td>
<td>Embedded Ceramic Antenna</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Absolute pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>EM500-SWL-W003: 3m H2O</td>
</tr>
<tr>
<td></td>
<td>EM500-SWL-W005: 5m H2O</td>
</tr>
<tr>
<td></td>
<td>EM500-SWL-W010: 10m H2O</td>
</tr>
<tr>
<td></td>
<td>(Customizable up to 200m and for other liquid)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 0.5% FS</td>
</tr>
</tbody>
</table>

<p>| Physical Characteristics | At least should be 1-1.5m longer than measuring range |</p>
<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>19000 mAh Li-SoCl₂ battery</td>
</tr>
<tr>
<td>Battery Life</td>
<td>4.5 year (10 min interval, SF12)</td>
</tr>
<tr>
<td></td>
<td>>10 year (10 min interval, SF7)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-20°C to +70°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>0% to 100% (non-condensing)</td>
</tr>
<tr>
<td>Dimension</td>
<td>105 × 71 × 69.5 mm (Waterproof connector and sensor are not included)</td>
</tr>
<tr>
<td>Mounting</td>
<td>Pole, wall, DIN rail</td>
</tr>
</tbody>
</table>

1.4 Dimensions (mm)

2. Hardware Introduction

2.1 Packing List

1 × EM500-SWL (Include cable and transmitter) 2 × Mounting Screws 1 × Hose Clamp 1 × Warranty Card 1 × Quick Guide

1 × DIN Rail (Optional)

⚠️ If any of the above items is missing or damaged, please contact your Ursalink sales representative.
2.2 Product Overview

Front View:
① LoRa Antenna (Internal)
② NFC Area
③ Water-proof Connector

Back View:
④ Battery (Internal)
⑤ Wall Mounting Holes
⑥ Pole Mounting Holes

3. Sensor Connection with EM500

Follow below to connect transmitter cable to EM500 device if they are separated.

1. Take off the mounting bracket, remove the cap, rubber seal and the screws on the bottom of the device, and then take off the enclosure cover.
2. Pass the cable through the cap, rubber seal and enclosure cover.
3. Pull out the motherboard, insert and lock the wires accordingly (see the label on the motherboard or following picture).

4. Put the motherboard back and restore everything in its due position.

![Diagram of sensor installation](image)

Pinouts:

<table>
<thead>
<tr>
<th>PIN</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>White</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>Yellow</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>Black</td>
<td>VOUT=12V</td>
</tr>
</tbody>
</table>

4. Sensor Installation

4.1 Liquid Level Sensor Installation

Lower the transmitter via cable into the media until it is close to the bottom of tanks or ponds. Be careful not to hit the bottom hard or touch hard objects like sand or sludge since it will damage the transmitter. It’s recommended to fix the transmitter cable with a fixed bracket.

Note: Ensure the gas holes of transmitter do not be blocked while mounting or using it.
If the transmitter is to be used in a well or other locations with turbulence or other disturbances, it is advisable to install a pipe to protect the transmitter. Several holes should be drilled at different heights of the pipe in order to let water flow into and remove dydrodynamic pressure. **Note:** The pipe can't be placed bend.

![Diagram of transmitter in well with pipe]

4.2 EM500 Installation

Ensure the location of EM500 is within the communication range of LoRaWAN gateway.

4.2.1 Wall Mounting

1. Attach the mounting bracket to the wall and drill. (Around 16mm)
 Note: The connecting line of two holes must be a horizontal line.
2. Mount the device on the wall.

![Diagram of wall mounting]

4.2.2 Pole Mounting

1. Loosen the hose clamp by turning the locking mechanism counter-clockwise.

2. Straighten out the hose clamp and slide it through the rectangular holes in the mounting
bracket, wrap the hose clamp around the pole.
3. Use a screwdriver to tighten the locking mechanism by turning it clockwise.

4.2.3 DIN Rail Mounting

Use 2 pieces of M3 × 6 flat head Phillips screws to fix the DIN rail to the device, and then hang the DIN rail on the mounting bracket. It is necessary to choose a standard bracket.

5. Turn ON/OFF the Sensor

EM500-SWL series can be turned ON/OFF via smartphone or computer with NFC (Near Field Communication) or button. Select one of following methods to turn on/off the device.

5.1 Turn ON/OFF via Smartphone APP

1. Download Ursalink configuration APP “Toolbox” and install it on your smartphone. The smartphone must support NFC.
2. Enable NFC on the smartphone and open the APP.
3. Attach the smartphone with NFC area to the device.
 Note: Ensure the location of your smartphone NFC area and it is recommended to take off phone case before using NFC.
4. Device information will be shown on the APP.
5. Switch the button of Device Status to turn on or off the device.

<table>
<thead>
<tr>
<th>Status</th>
<th>Setting</th>
<th>Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>6126A10745740084</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>EM500-SWL-W003-865</td>
<td></td>
</tr>
<tr>
<td>Device EUI</td>
<td>24e124126a107457</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>V1.2</td>
<td></td>
</tr>
<tr>
<td>Hardware Version</td>
<td>V1.0</td>
<td></td>
</tr>
<tr>
<td>Device Status</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>Join Status</td>
<td>Activated</td>
<td></td>
</tr>
<tr>
<td>RSSI/SNR</td>
<td>-47/14</td>
<td></td>
</tr>
<tr>
<td>Liquid Level (Water)</td>
<td>2.03 m</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>Channel Mask</td>
<td>0007</td>
<td></td>
</tr>
<tr>
<td>Uplink Frame Counter</td>
<td>1354</td>
<td></td>
</tr>
</tbody>
</table>

6. Enter the correct password (Default password: 123456) and wait a few seconds until APP shows “Operate Successful!”.

Note: Keep the two devices close together and do not move them in order that you can get the best connectivity as possible when turning on or off via NFC. No response can be caused by long distance, wrong location or rapid movement.
5.2 Turn ON/OFF via PC Software

1. Download Ursalink configuration software “Toolbox” and open the software.
2. Connect NFC reader to computer and attach the device to NFC reader.
3. Select type as NFC and serial port of NFC reader, then click “save”.

4. Device information will be shown on the software.

5. Click “Power On” to turn on the device or “Power Off” to turn off the device.
6. Enter password (default password:123456) and press Enter key to change device status.
5.3 Turn ON/OFF via Button

1. Remove screws on the bottom of EM500-SWL and take off the upper enclosure.
2. Find the button beside the battery.

3. Press the button until LED blinks to turn on or off the device. (about 3 seconds)
 Press the button until LED blinks rapidly to reset the device to factory default. (Over 10 seconds)

6. Sensor configuration

Ursalink EM500-SWL series sensors can be monitored and configured via NFC technology. In order to protect the security of sensor, password validation is required when turning on/off the sensor or changing configuration. Select one of the following ways to configure EM500-SWL sensors.

6.1 Configuration via Smartphone APP

Make sure Ursalink Toolbox APP is downloaded and installed on your smartphone.
6.1.1 Read Configuration

1. Open APP “Toolbox” and click “Read” to read current information of device.

2. Attach the smartphone with NFC area to the device until the APP shows “Read Successful!”.

 Note: Failing to read can be caused by long distance, wrong location, or rapid movement.

6.1.2 Write Configuration

1. Open APP “Toolbox” and go to “Settings” page.
2. Change parameters as required and click “Write”.

<table>
<thead>
<tr>
<th>Status</th>
<th>Setting</th>
<th>Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>8126A107457400B4</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>EM500-SWL-W003-865</td>
<td></td>
</tr>
<tr>
<td>Device EUI</td>
<td>24e124126a107457</td>
<td></td>
</tr>
<tr>
<td>Firmware Version</td>
<td>V1.2</td>
<td></td>
</tr>
<tr>
<td>Hardware Version</td>
<td>V1.0</td>
<td></td>
</tr>
<tr>
<td>Device Status</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>Join Status</td>
<td>Activated</td>
<td></td>
</tr>
<tr>
<td>RSSI/SNR</td>
<td>-47/14</td>
<td></td>
</tr>
<tr>
<td>Liquid Level (Water)</td>
<td>2.03 m</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>Channel Mask</td>
<td>0007</td>
<td></td>
</tr>
<tr>
<td>Uplink Frame Counter</td>
<td>1354</td>
<td></td>
</tr>
</tbody>
</table>
3. Enter password (default password: 123456).
4. Attach the smartphone with NFC area to the device and wait a few seconds until APP shows “Write Successful!”. The device will automatically re-join the network if LoRaWAN parameters are changed.

Note: Failing to write can be caused by long distance, wrong location, or rapid movement.

6.1.3 Template Settings

Template settings are used for easy and quick device configuration in bulk.

Note: Template function is allowed only for sensors with the same model and LoRa frequency band.

1. Go to “Template” page of APP and save current settings as a template.
2. Attach the smartphone with NFC area to another device.
3. Select the template file from Toolbox APP and click “Write”.

4. Enter password of this device and keep the two devices close until the APP shows “Write successful!”.

5. Slide the template item left to edit or delete the template.
6.2 Configuration via PC

Make sure “Toolbox” is downloaded on your computer.

6.2.1 Read Configuration

1. Open software “Toolbox” and click “Read” to read current information of device.

<table>
<thead>
<tr>
<th>Status</th>
<th>Read</th>
<th>Power Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model: EM500-SWL, W003-868</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Number: 615A10T46740084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device EUI: 244124136417457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firmware Version: 01.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware Version: 1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Attach the device to the NFC reader until Toolbox shows “success”.

 Success Firmware Version: 01.01

 Fail Firmware Version: 01.01

Note: Failing to read can be caused by long distance, wrong location, or rapid movement.

6.2.2 Write Configuration

1. Go to “Settings” page to change parameters as requirements and click “save”.
2. Click “Write” and enter the correct password (default password: 123456).
3. Press Enter key to write and attach the device close to NFC reader until “Write” button disappear. The device will automatically re-join the network if LoRaWAN parameters are changed.

Note: Keep the two devices close and don’t move them in order that you can get the best connectivity as possible when writing data via NFC. Bad connection can be caused by long distance, wrong location, or rapid movement.

6.2.3 Upgrade

6.2.3.1 Upgrade Locally

1. Download firmware to your computer.
2. Go to “Maintenance -> Upgrade” in Toolbox.
3. Click “Browse” and select the firmware from computer.
4. Click “Upgrade” and enter password of the device.
5. Press Enter key to start upgrade. Device will check if the firmware is correct. If it is correct, firmware will be imported to the device to upgrade.

Note: Keep the two devices close and don’t move them in order that you can get the best connectivity as possible when upgrading. Failing to upgrade can be caused by long distance, wrong location, or rapid movement.
6.2.3.2 FOTA
1. Make sure your computer can access the Internet.
2. Click “Check for Updates” to search for the latest firmware via computer Internet and upgrade.

Note: Keep the two devices close and don’t move them in order that you can get the best connectivity as possible when upgrading. Failing to upgrade can be caused by long distance, wrong location, or rapid movement.

6.2.4 Template and Reset

6.2.4.1 Template Configuration
1. Go to “Maintenance -> Template and Reset” in Toolbox.
2. Click “Export” to save the current settings as a template.

3. Click “Browse” to select the correct template from computer.
4. Click “Import” to import the template to the device.
6.2.4.2 Reset

Click the “Reset” to reset the setting to factory default.

7. Sensor Parameters (for App and PC)

7.1 LoRa WAN Settings

7.1.1 Basic Settings-OTAA

Location:
Ursalink ToolBox(PC): LoRaWAN Settings → Basic
Ursalink ToolBox(APP): Device → Settings → LoRaWAN Settings

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>App EUI</td>
<td>Enter the application EUI. The Network Server receives request and consults the entity associated with the APP EUI to validate the request. If permission is granted, it responds with a join-accept message.</td>
<td>24e124c000 2a0001</td>
</tr>
<tr>
<td>Join Type</td>
<td>Select from: "OTAA" and "ABP". OTAA: Over-the-Air Activation. For over-the-air activation, end-devices must follow a</td>
<td>OTAA</td>
</tr>
</tbody>
</table>
join procedure prior to participating in data exchanges with the network server. An end-device has to go through a new join procedure every time it loses the session context information.

ABP: Activation by Personalization.
Under certain circumstances, end-devices can be activated by personalization. Activation by personalization directly ties an end-device to a specific network by-passing the join request - join accept procedure.

Application Key

Enter the application key. Whenever an end-device joins a network via over-the-air activation, the application key is used to derive the Application Session key.

| Application Key | 5572404c69 6e6b4c6f526 1323031382 3 |

Confirmed Mode

After sending the attribute/data/battery packets to the network server, the device will resend these packets if it does not receive ACK bit from the Network Server.

Note: If the device doesn’t receive ACK for a long time, the device will resend confirmed packets 3 times at most. However, the device will resend attribute package all the time.

| Confirmed Mode | Disabled |

ADR

ADR : Adaptive Data Rate.
Enabled: The Network Server will adjust the datarate by MAC command.
Disabled: Whatever how the signal quality is, the Network Server will not adjust the datarate of the device.

| ADR | Enabled |

7.1.2 Basic Settings-ABP

Location:
Ursalink ToolBox(PC): LoRaWAN Settings → Basic
Ursalink ToolBox(APP): Device → Settings → LoRaWAN Setting

![Activation By Personalisation](image_url)
Basic Settings-ABP

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>App EUI</td>
<td>Enter the application EUI. The Network Server receives request and consults the entity associated with the APP EUI to validate the request. If permission is granted, it responds with a join-accept message.</td>
<td>24e124c0002a001</td>
</tr>
<tr>
<td>Join Type</td>
<td>Select from: "OTAA" and "ABP". OTAA: Over-the-Air Activation. For over-the-air activation, end-devices must follow a join procedure prior to participating in data exchanges with the network server. An end-device has to go through a new join procedure every time it has lost the session context information. ABP: Activation by Personalization. Under certain circumstances, end-devices can be activated by personalization. Activation by personalization directly ties an end-device to a specific network by-passing the join request - join accept procedure.</td>
<td>OTAA</td>
</tr>
<tr>
<td>Device Address</td>
<td>Enter the device address. The device address identifies the end-device within the current network.</td>
<td>The 5th to 12th digits number of SN</td>
</tr>
<tr>
<td>Network Session Key</td>
<td>Enter the network session key of the device. The network session key specific for the end-device. It is used by the end-device to calculate the MIC or part of the MIC (message integrity code) of all uplink data messages to ensure data integrity.</td>
<td>5572404c696e6b4c6f52613230313823</td>
</tr>
<tr>
<td>Application Session Key</td>
<td>Enter the application session key of the device. The AppKey is an application session key specific for the end-device. It is used by both the application server and the end-device to encrypt and decrypt the payload field of application-specific data messages.</td>
<td>5572404c696e6b4c6f52613230313823</td>
</tr>
<tr>
<td>Confirmed Mode</td>
<td>After sending the attribute/data/battery packets to the network server, the device will resend these packets if it does not receive ACK bit from the Network Server. Note: If the device doesn’t receive ACK for a long time, the device will resend confirmed packets 3 times at most. However, the device will resend attribute package all the time.</td>
<td>Disabled</td>
</tr>
<tr>
<td>ADR</td>
<td>ADR: Adaptive Data Rate. Enabled: The Network Server will adjust the datarate</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
7.1.3 Channel Settings

Location:
Ursalink ToolBox(PC): LoRaWAN Settings → Channel
Ursalink ToolBox(APP): Device → Settings → LoRaWAN Settings

Note: Make sure the LoRa channel configuration of EM500-SWL matches the LoRaWAN gateway.

LoRa frequency configuration is as follows if the sensor LoRa frequency is one of EU433/EU868/RU864/IN865/AS923/KR920:

LoRa frequency configuration is as follows if the sensor LoRa frequency is one of CN470/US915/AU915:
Enter the index of the channel to be enabled in the input box, separated by commas.

Example:
1, 40: Enabling Channel 1 and Channel 40
1-40: Enabling Channel 1 to Channel 40
1-40, 60: Enabling Channel 1 to Channel 40 and Channel 60
All: Enabling all channels
Null: Indicates that all channels are disabled

Note:
For US915:
64 channels numbered 0 to 63 utilize LoRa 125 kHz BW starting at 902.3 MHz and incrementing linearly by 0.2 MHz to 914.9.
8 channels numbered 64 to 71 utilize LoRa 500 kHz BW starting at 903.0 MHz and incrementing linearly by 1.6 MHz to 914.2.

For AU915:
64 channels numbered 0 to 63 utilize LoRa 125 kHz BW starting at 915.2 MHz and incrementing linearly by 0.2 MHz to 927.8.
8 channels numbered 64 to 71 utilize LoRa 500 kHz BW starting at 915.9 MHz and incrementing linearly by 1.6 MHz to 927.1.

For CN470:
80 channels numbered 0 to 79 utilize LoRa 125 kHz BW starting at 470.3 MHz and incrementing linearly by 0.2 MHz to 486.1.
16 channels numbered 80 to 95 utilize LoRa 125 kHz BW starting at 486.3 MHz and incrementing linearly by 1.6 MHz to 489.3.

7.2 Device Settings

7.2.1 General

Location:
Ursalink ToolBox(PC): Device Settings → General
Ursalink ToolBox(APP): Device → Settings → General Settings

<table>
<thead>
<tr>
<th>Device General Settings</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Type</td>
<td>Show the type of the device.</td>
<td>Null</td>
</tr>
<tr>
<td>Reporting Interval</td>
<td>The sensor reports the sampling data at regular intervals. Range: 5-30 (mins)</td>
<td>10</td>
</tr>
<tr>
<td>Change Password</td>
<td>Change the password used for changing device status and writing configuration.</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
7.2.2 Data Calibration

Location:
Ursalink ToolBox(PC): Device Settings → Data Calibration Settings
Ursalink ToolBox(APP): Device → Settings → Data Calibration Settings

Note: It is recommended to do the calibration before using the device.

<table>
<thead>
<tr>
<th>Data Calibration Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Enable</td>
</tr>
<tr>
<td>Current Raw Value</td>
</tr>
<tr>
<td>Calibration Button</td>
</tr>
<tr>
<td>Liquid Level Calibration</td>
</tr>
<tr>
<td>Final Value</td>
</tr>
<tr>
<td>Abnormal Value Prevention</td>
</tr>
</tbody>
</table>

Set Value

Setting value=|A - B | / C * 100%.

(A=current measured value; B=previous measured value; C=maximum range)

If the current measured value exceeds the set value after calculation by the previous formula, it is abnormal and device will measure again.

Null

7.2.3 Threshold

Location:
Ursalink ToolBox(PC): Device Settings → Threshold Settings
Ursalink ToolBox(APP): Device → Settings → Threshold Settings

<table>
<thead>
<tr>
<th>Threshold Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Liquid Level</td>
</tr>
<tr>
<td>Over</td>
</tr>
<tr>
<td>Below</td>
</tr>
</tbody>
</table>

Example: Set the "Lockout Time" for 10min, "Duration" for 5min.

The device will report the detected value immediately when the value reaches the threshold and last for 5mins. After that, the device will check the detected value every 10 mins, and report the value again if it reaches the threshold and last for 5mins.
8. Sensor Management via Ursalink Cloud

Ursalink cloud is a comprehensive platform that provides multiple services including device remote management and data visualization with the easiest operation procedures.

8.1 Ursalink Cloud Registration

Register and log in Ursalink Cloud.

Ursalink Cloud URL: https://cloud.ursalink.com/login.html

8.2 Add a Ursalink LoRaWAN Gateway

1. Enable “Ursalink” type network server and “Ursalink Cloud” mode in gateway web GUI.

Note: Ensure gateway has accessed the Internet.
2. Go to “My Devices->Gateway” of Ursalink Cloud and click “Add” to add gateway to Ursalink Cloud via SN.

3. Check if gateway is online in Ursalink Cloud.

8.3 Add EM500-SWL to Cloud

2. After EM500-SWL is connected to Ursalink Cloud, Click “History Data” to check the data on Ursalink cloud.