Contents

1. Preface .. 3
2. Introduction .. 3
 2.1 Features .. 3
 2.2 Parameters .. 4
 2.3 LED Indicator Description .. 4
3. Installation .. 5
 3.1 Environment .. 5
 3.2 Power Supply .. 5
 3.3 Micro USB Port ... 6
 3.4 Terminal Description .. 6
 3.5 Digital Input .. 6
 3.6 Relay Output .. 7
4. Configuration ... 9
 4.1 Configuration via PC .. 9
 4.1.1 Serial Port Settings ... 10
 4.2 Status ... 11
 4.3 General ... 12
 4.3.1 Send Data To the Ursalink Cloud .. 12
 4.3.2 Send Data To the User-built Server on AWS .. 13
 4.3.3 Send Data To the User-built Server by TCP .. 14
 4.3.4 Send Data To the User-built Server by UDP .. 16
 4.3.5 Send Data To the User-built Server by MQTT ... 17
 4.3.6 Send Data To the User-built Server on Aliyun (Only Applicable to UC3514) 20
 4.3.7 Cellular Settings .. 21
 4.4 Command .. 22
 4.4.1 Read Command from Device ... 22
 4.4.2 Open a Command File .. 23
 4.4.3 Save the Command to Device ... 24
 4.4.4 Save the Command as File .. 24
 4.5 IF-THEN Behaviour Command .. 25
 4.5.1 Supported IF Condition ... 25
 4.5.2 Supported THEN Actions .. 27
 4.6 Upgrade .. 28
5. Application Examples .. 30
 5.1 Monitoring Alarm .. 30
 5.2 Control Appliances .. 31
 5.2.1 Remotely Control a Bulb on Ursalink Cloud ... 31
 5.2.2 Send an Alert When Over-temperature Occurs ... 31
 5.2.3 Turn on the Heater Regularly .. 32
1. Preface

Thank you for choosing Ursalink UC3x14 Cellular/NB-IoT Remote I/O. This user guide will present in detail all the functions and features of the product. UC3x14 is designed for both industrial and commercial applications. The product should be used under the guidance of this user guide, referring to parameters and technical specifications. The UC3x14 series is a compact, high-performance device that offers remote controllability and easy management of machines and equipment over the cellular/NB-IoT network.

We bear no liability for property loss or physically injury arising from abnormal or incorrect usage of this product.

2. Introduction

UR3x14 is designed as a cost-effective industrial machine monitoring device that monitors and controls up to 2 DC signals and 2 drivables.

With the aid of UC3x14, the alarm condition brings attention to engineering personnel immediately. Also, with Ursalink Cloud, the engineering personnel can trigger any relay outputs from anywhere at any time.

The device can give immediate response to the status of both input and output conditions. A cellular modem is embedded in UC3x14.

(Model Naming Rule: UC3214 = 2G network version, UC3314 = 3G network version, UC3414 = 4G network version, UC3514 = NB-IoT network version)

This user guide is intended to provide detailed technical specifications and explanations to basic users as well as technically-minded groups. It is a live document, and will be updated from time to time. Please ensure that you have the latest version, by checking our website at: https://www.ursalink.com/en/documents-download/

2.1 Features

- 2 digital inputs connected with up to 2 DC signals
- 2 relay drivable outputs
- Combined with data collection and transmission
- Easily configured by USB or Ursalink Cloud
- Ursalink Cloud for remote monitoring and control
- Support public cloud like AWS, Azure and Alibaba Cloud
- Support private UDP/TCP server
- Support MQTT protocol
- Operate autonomously even when cellular network is down
- Automatic switch of field devices at set times
- Customizable conditions & programmable actions
- Send alerts via email
- Reliable performance with built-in watchdog

2.2 Parameters

<table>
<thead>
<tr>
<th>Parameter Item</th>
<th>Reference Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM Card</td>
<td>Micro SIM</td>
</tr>
<tr>
<td>Antenna</td>
<td>50 Ω SMA Antenna Interface</td>
</tr>
<tr>
<td>Digital Input</td>
<td>Opto-isolated depending on voltage</td>
</tr>
<tr>
<td></td>
<td>Can accept any DC signals of any type, including:</td>
</tr>
<tr>
<td></td>
<td>➢ Dry Contacts</td>
</tr>
<tr>
<td></td>
<td>➢ DC Voltage (3 - 20V)</td>
</tr>
<tr>
<td></td>
<td>High Voltage: +3V ~ +24V</td>
</tr>
<tr>
<td></td>
<td>Low Voltage: +1V max</td>
</tr>
<tr>
<td>Digital Output</td>
<td>2 x SPDT Relay Contact Rating:</td>
</tr>
<tr>
<td></td>
<td>3Amp DC (Max: 30 V) or 3Amp AC (Max: 250 V)</td>
</tr>
<tr>
<td>IO Connector type</td>
<td>Screw Terminals</td>
</tr>
<tr>
<td>DC Power Supply</td>
<td>5-24 VDC</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Max: 1.6 W</td>
</tr>
<tr>
<td></td>
<td>Average: 0.56 W</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +70°C (-40° F to +158° F)</td>
</tr>
<tr>
<td></td>
<td>Reduce cellular performance above 60° C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>0% to 95% (non-condensing)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>79 x 60 x 24 mm</td>
</tr>
</tbody>
</table>

2.3 LED Indicator Description

System:
- Solid On: Equipment starts
- On for 500ms, off for 500ms: All OK
- On for 100ms, off for 100ms: Device cannot connect to server

ACT:
- Off: Network registration fails
- On for 75ms, off for 3000ms: Successfully registered on network
- On for 500ms, off for 500ms, blinking three times: Sending/Receiving MQTT message
3. Installation

3.1 Environment

Due to the product properties of UC3x14, we STRONGLY advise that it should not be installed in proximity to a variable speed drive or with any other electrically noisy equipment. DO NOT install UC3x14 into a metal enclosure unless an antenna is mounted on the outside of the enclosure.

3.2 Power Supply

UC3x14 features a 2 pin 3.5mm terminal block where a power supply can be connected. The power supply should have the following specifications:

- Output Voltage: 12V nominal
- Output Current: 0.5A

For industrial applications, it is advised that UC3x14 should be installed into its own metal housing and be powered from a separate power supply (as opposed to sharing one with other equipment).

Please Note: While UC3x14 has fairly rugged internal power supply circuitry, no special provision for lightning protection is well in place. If UC3x14 is used in an area where thunderstorm is about to occur, it is advisable to use a commercially available lightning suppressor (the same applies to inputs or outputs connected to wires longer than 2 or 3 meters). The guarantee does not cover damage resulting from lightning strikes! UC3x14 can operate reliably from voltages in the range of 5 to 24 VDC.
3.3 Micro USB Port

UC3x14 provides a micro USB port to connect to a PC via USB cable, which allows the PC to configure the unit.

3.4 Terminal Description

<table>
<thead>
<tr>
<th>Terminal Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin+</td>
<td>Positive terminal of the DC power supply (+)</td>
</tr>
<tr>
<td>GND</td>
<td>Negative terminal of the DC power supply (-)</td>
</tr>
</tbody>
</table>

3.5 Digital Input

- When the input is triggered either as high or low, UC3x14 will take action if you have pre-configured related commands.
- Terminal "IN1" or "IN2" is internally pulled high. Leave the connection open or connect it to "0 - 1 V", which will indicate an "Input-De-activate" state.
- When terminal "IN1" or "IN2" is connected to "3-24 V", it will indicate an "Input-Activate" state.
- Trigger voltage: Minimum = 3 VDC, Maximum = 24 VDC.
3.6 Relay Output

- The output is used to switch circuits on and off and can be controlled via Ursalink Cloud.
- The output terminals are internally connected to a 3 Amp SPDT relay.
- OUT_NC = Normally Closed
- OUT_COM = Common
- OUT_NO = Normally Open

<table>
<thead>
<tr>
<th>Maximum Current</th>
<th>3 Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Voltage</td>
<td>250VAC, 30VDC</td>
</tr>
</tbody>
</table>

- When the output is off, the COM and N/C terminals will be internally connected to each other. Here is a schematic of the output circuit:
When the output is on, the COM and N/O terminals will be internally connected to each other. Here is a schematic of the output circuit:
4. Configuration

4.1 Configuration via PC

Follow these steps:
Step 1: Insert SIM card into the unit.
Step 2: Connect UC3x14 to PC via the micro USB port.
Step 3: Power on UC3x14.
Step 4: Run the Ursalink ToolBox.

The software will display this interface when getting started. Here you can create a new setup, import an existing setup from your PC, or retrieve the current setup from the Ursalink UC3x14.
4.1.1 Serial Port Settings

When the Ursalink ToolBox displays: Connecting to device, please wait...
You can click Serial Port Settings to set the correct serial port parameters.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Port</td>
<td>Select the serial port for data transmission.</td>
<td>Null</td>
</tr>
<tr>
<td>Login Password</td>
<td>Enter the login password.</td>
<td>123456</td>
</tr>
</tbody>
</table>
If both the serial port parameters and the login password are correct, it will display: Serial port is connected.

4.2 Status

Click "Status" to see the basic status information of this device:
4.3 General

Click "General" to set the general settings of this device:

4.3.1 Send Data To the Ursalink Cloud

<table>
<thead>
<tr>
<th>Basic Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
</tr>
<tr>
<td>Application Mode</td>
</tr>
<tr>
<td>Keep Alive Interval</td>
</tr>
<tr>
<td>Change Password</td>
</tr>
</tbody>
</table>
4.3.2 Send Data To the User-built Server on AWS

Basic Settings_Ursalink Cloud

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>Show the identifier of the device.</td>
<td>The SN of the device</td>
</tr>
<tr>
<td>Application Mode</td>
<td>Choose the control method from: Null, Ursalink Cloud, AWS, TCP, UDP, MQTT.</td>
<td>Ursalink Cloud</td>
</tr>
<tr>
<td></td>
<td>Ursalink Cloud: The device will transmit data to Ursalink Cloud, and users can configure the device via Ursalink Cloud only.</td>
<td></td>
</tr>
<tr>
<td>Keep Alive Interval/s</td>
<td>After the device is connected with Ursalink Cloud, the device will send heartbeat packet to the Ursalink Cloud regularly by MQTT to keep alive. The interval range is 1-3600 seconds.</td>
<td>10</td>
</tr>
</tbody>
</table>

Basic Settings_AWS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Mode</td>
<td>AWS: The device will transmit data to the user-built server on AWS.</td>
<td>-</td>
</tr>
<tr>
<td>Server Address</td>
<td>Fill in the server address used for receiving data.</td>
<td>Null</td>
</tr>
<tr>
<td>Keep Alive Interval/s</td>
<td>After the device is connected with AWS, the device will send heartbeat packet to the AWS regularly by</td>
<td>10</td>
</tr>
</tbody>
</table>
4.3.3 Send Data To the User-built Server by TCP

Basic Settings

- **Device ID**: 612390990554
- **Description**: This is a UC for ...
- **Application Mode**: TCP
- **Reporting Interval**: 60 s
- **Data Polling Interval**: 12 s
- **TCP Keep Alive Interval**: 1 min
- **Custom Heartbeat Mode**: On
- **Custom Content**:
- **Heartbeat Interval**: 30 s
- **Require Response**: On
- **Response Content**:

<table>
<thead>
<tr>
<th>Server Address</th>
<th>Server Port</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>110.87.98.68</td>
<td>9007</td>
<td>Disconnected</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0</td>
<td>Disconnected</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Default</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Device ID</td>
<td>Show the identifier of the device.</td>
<td>The SN of the device</td>
</tr>
<tr>
<td>Description</td>
<td>Enter the description of the device. The device will send a message with the description to the server when first connected, which is typically used for identifying the device.</td>
<td>Null</td>
</tr>
<tr>
<td>Application Mode</td>
<td>TCP: The device will transmit data to the user-built server by TCP</td>
<td></td>
</tr>
<tr>
<td>Reporting Interval</td>
<td>Set the regular report interval. The device will send the I/O status and signal strength to the user-built server regularly. The interval range is 1-86400 seconds.</td>
<td>300</td>
</tr>
<tr>
<td>Data Polling Interval</td>
<td>Set the Data Polling interval. The device will read the I/O status and signal strength regularly. The interval range is 1-3600 seconds.</td>
<td>30</td>
</tr>
<tr>
<td>TCP Keep Alive Interval/min</td>
<td>After TCP client is connected with TCP server, the device will send heartbeat packet to the server regularly by TCP to keep alive. The interval range is 1-120 minutes.</td>
<td>1</td>
</tr>
<tr>
<td>Custom Heartbeat Mode</td>
<td>The device will send custom heartbeat packet to the server when this function is enabled.</td>
<td>Disabled</td>
</tr>
<tr>
<td>Custom Content</td>
<td>Please enter the content of this packet when custom heartbeat mode is enabled.</td>
<td>Null</td>
</tr>
<tr>
<td>Heartbeat Interval/s</td>
<td>After TCP client is connected with TCP server, the device will also send custom heartbeat packet to the server regularly by TCP to keep alive. The interval range is 1-3600 seconds.</td>
<td>30</td>
</tr>
<tr>
<td>Require Response</td>
<td>If this function is enabled, the server will reply with a packet with specific content when it receives a custom heartbeat packet. Note: This mode can only be enabled when custom heartbeat mode is enabled.</td>
<td>Disabled</td>
</tr>
<tr>
<td>Response Content</td>
<td>Please enter the content of this response packet.</td>
<td>Null</td>
</tr>
<tr>
<td>Server Address</td>
<td>Fill in the TCP server address (IP/domain name).</td>
<td>Null</td>
</tr>
<tr>
<td>Server Port</td>
<td>Fill in the TCP server port. Range: 1-65535.</td>
<td>Null</td>
</tr>
<tr>
<td>Status</td>
<td>Show the connection status between the server and the device.</td>
<td>Null</td>
</tr>
</tbody>
</table>
4.3.4 Send Data To the User-built Server by UDP

Basic Settings

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>Show the identifier of the device.</td>
<td>The SN of the device</td>
</tr>
<tr>
<td>Description</td>
<td>Enter the description of the device. The device will send a message with the description to the server when first connected, which is typically used for identifying the device.</td>
<td>Null</td>
</tr>
<tr>
<td>Application Mode</td>
<td>UDP: The device will transmit data to the user-built server by UDP.</td>
<td>--</td>
</tr>
<tr>
<td>Reporting Interval</td>
<td>Set the regular report interval. The device will send I/O status and signal strength to the user-built server regularly. The interval range is 1-86400 seconds.</td>
<td>300</td>
</tr>
<tr>
<td>Data Polling Interval</td>
<td>Set the Data Polling interval. The device will read the I/O status and signal strength regularly.</td>
<td>30</td>
</tr>
</tbody>
</table>
4.3.5 Send Data To the User-built Server by MQTT

Basic Settings

- **Device ID**: 612390990554
- **Description**: This is a UC for...
- **Application Mode**: MQTT
- **Reporting Interval**: 60 s
- **Data Polling Interval**: 30 s
- **Broker Address**:
- **Port**: 9004
- **Client ID**: MQTT_FX
- **Connection Timeout**: 30 s
- **Keep Alive Interval**: 60 s
- **Change Password**:

Custom Heartbeat Mode
The device will send custom heartbeat packet to the server when this function is enabled. The interval range is 1-3600 seconds.

Custom Content
Please enter the content of this packet when custom heartbeat mode is enabled.

Heartbeat Interval/s
After UDP client is connected with UDP server, the device will also send custom heartbeat packet to the server regularly by UDP to keep alive. The interval range is 1-3600 seconds. 30

Require Response
If this function is enabled, the server will reply with a packet with specific content when it receives a custom heartbeat packet. **Note**: This mode can only be enabled when custom heartbeat mode is enabled.

Response Content
Please enter the content of this response packet.

Server Address
Fill in the UDP server address (IP/domain name).

Server Port
Fill in the UDP server port. Range: 1-65535.

Status
Show the connection status between the server and the device. **Note**: The connection status can only be displayed when require response mode is enabled.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>Show the identifier of the device.</td>
<td>The SN of the device</td>
</tr>
<tr>
<td>Description</td>
<td>Enter the description of the device. The device will send a message with the description to the server when first connected, which is typically used for identifying the device.</td>
<td>Null</td>
</tr>
<tr>
<td>Application Mode</td>
<td>MQTT: The device will transmit data to the user-built server by MQTT.</td>
<td>--</td>
</tr>
<tr>
<td>Reporting Interval</td>
<td>Set the regular report interval. The device will send I/O status/value and signal strength to the Server regularly. The interval range is 1-86400 seconds.</td>
<td>300</td>
</tr>
<tr>
<td>Data Polling Interval</td>
<td>Set the data polling interval. The device will read the I/O status/value and signal strength regularly. The interval range is 1-3600 seconds.</td>
<td>30</td>
</tr>
<tr>
<td>Broker Address</td>
<td>Fill in the broker address for receiving data.</td>
<td>--</td>
</tr>
<tr>
<td>Broker Port</td>
<td>Fill in the broker port for receiving data.</td>
<td>--</td>
</tr>
<tr>
<td>Client ID</td>
<td>Client ID is the unique identity of the client to the server. It must be unique when all clients are connected to the same server, and is the key to handling message at QoS 1 and 2.</td>
<td>--</td>
</tr>
<tr>
<td>Connection Timeout</td>
<td>Set the maximum time that the client waits for the response from the server. If the client does not get a response after the maximum response time, it's determined that the connection has broken. The range is 1-9999 seconds.</td>
<td>30</td>
</tr>
<tr>
<td>Keep Alive Retry Times</td>
<td>After MQTT client is connected with the MQTT broker, the device will send heartbeat packet to the broker regularly by MQTT to keep alive. The interval range is 1-9999 seconds.</td>
<td>60</td>
</tr>
<tr>
<td>Change Password</td>
<td>Change the password of the connected device.</td>
<td>--</td>
</tr>
</tbody>
</table>
Select the authentication method required by the server.
When you select user credentials for authentication, you need to enter the username and password required for authentication.

User Credentials

<table>
<thead>
<tr>
<th>Enable</th>
<th>Username</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>admin</td>
<td>********</td>
</tr>
</tbody>
</table>

If the server needs a certificate for verification:
Please import CA certificate, client certificate and client key file for authentication.

TLS

<table>
<thead>
<tr>
<th>Enable</th>
<th>Protocol</th>
<th>CA File</th>
<th>Client Certificate</th>
<th>Client Key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TLSv1.2</td>
<td>ca</td>
<td>client</td>
<td>key</td>
</tr>
</tbody>
</table>

[Please import CA certificate, client certificate and client key file for authentication.]
4.3.6 Send Data To the User-built Server on Aliyun (Only Applicable to UC3514)

Basic Settings

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>Show the identifier of the device.</td>
<td>The SN of the device</td>
</tr>
<tr>
<td>Description</td>
<td>Enter the description of the device. The device will send a message with the description to the server when first connected, which is typically used for identifying the device.</td>
<td>Null</td>
</tr>
<tr>
<td>Application Mode</td>
<td>Aliyun: The device will transmit data to the user-built server on Aliyun.</td>
<td>--</td>
</tr>
<tr>
<td>Reporting Interval</td>
<td>Set the regular report interval. The device will send I/O status and signal strength to the Server regularly. The interval range is 1-86400 seconds.</td>
<td>1800</td>
</tr>
<tr>
<td>Data Polling Interval</td>
<td>Set the data polling interval. The device will read I/O status and signal strength regularly. The interval range is 1-3600 seconds.</td>
<td>360</td>
</tr>
</tbody>
</table>
4.3.7 Cellular Settings

<table>
<thead>
<tr>
<th>Cellular Settings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Type</td>
<td>Auto</td>
</tr>
<tr>
<td>PIN Code</td>
<td></td>
</tr>
<tr>
<td>APN</td>
<td>Network1</td>
</tr>
</tbody>
</table>
Cellular Settings (Only Applicable to UC3214/UC3314/UC3414)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Type</td>
<td>Choose the types of cellular network for Internet access priority. When you change the network type, you need to restart the device to make the change take effect.</td>
<td>Depending on the cellular module</td>
</tr>
<tr>
<td>PIN Code</td>
<td>Please enter a PIN code for locking your SIM card. The length is 4 - 8.</td>
<td>Null</td>
</tr>
<tr>
<td>APN</td>
<td>Enter the Access Point Name for cellular dial-up connection provided by local ISP. The length is 1 - 16.</td>
<td>Null</td>
</tr>
</tbody>
</table>

4.4 Command

4.4.1 Read Command from Device

Click "Command" to go to the configuration page. Ursalink ToolBox will read command from the connected device automatically. This will take about 5 seconds.
Then the command saved in this device will be displayed:

![Image of Command Display]

4.4.2 Open a Command File

You can import the existing command file from your PC as follows:

Step 1: Click "Open a Command File".

Step 2: Select the command file.

![Image of Open Command File]

Please provide the page number or any specific section number if you need more detailed assistance.
4.4.3 Save the Command to Device

You can click "Save the Command to Device" to save the command having been configured on the Ursalink ToolBox.

4.4.4 Save the Command as File

You can click "Save the Command as File" to save the command having been configured on the Ursalink ToolBox as a file and save it on your computer.

You can re-edit the file name and determine the storage path, the command will be saved as two types of files.

<table>
<thead>
<tr>
<th>Name</th>
<th>Date Modified</th>
<th>Type</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command.dat</td>
<td>11/6/2018 4:11 PM</td>
<td>DAT File</td>
<td>4 KB</td>
</tr>
<tr>
<td>Command.txt</td>
<td>11/6/2018 4:11 PM</td>
<td>Text Document</td>
<td>2 KB</td>
</tr>
</tbody>
</table>

The ".dat" file can be recognized by Ursalink ToolBox only.
The ".txt" file is an editable text file for user.
4.5 IF-THEN Behaviour Command

The Ursalink UC3x14 is running with a number of defined behaviour commands. Each command takes the form of an IF-THEN statement pair. You are thus able to select certain trigger conditions to cause desired actions. The Ursalink UC3x14 allows up to 8 separate behaviour commands with some models.

Users can select time or input constraints for any IF-THEN statement pairs, so that an action will only be triggered during certain period within a day, or only if certain input/output conditions are met.

The user can enter the edit page by clicking , or delete the command by clicking .

4.5.1 Supported IF Condition

4.5.1.1 IF the Time Is ...

A command containing this IF condition will be triggered at a specific time every day within a specified range of dates, or on every selected day of the week.

The user can choose the day of the week from:

The user can also set the time from 00:00 to 23:59 on a certain day.

4.5.1.2 IF Input

A command containing this IF condition will be triggered if the selected input changed according to the specified option.
The user can setup multiple combinations; however, input 1 and input 2 must be activated before action is taken.

The logic options available include:
- **AND**: ALL the selected signals become active or ANY selected signals become inactive
- **OR**: ANY selected signals become active or ALL selected signals become inactive

Then the user can choose from the following options:

- Goes active (rising edge-triggered)
- Goes inactive (falling edge-triggered)
- Changes state (triggered on rising or falling edge)
- Is active (high level triggered)
- Is inactive (low level triggered)

Thus, if the user chooses "Goes Active", then as soon as the specified input changes from inactive to active, the command will be triggered. Also, it applies to the remaining options when the preset conditions are met.

The user is also able to specify a "Continued time" for this command, which will not be triggered until it remains Active or Inactive longer than the time specified. Moreover, the user can specify a "Lockout time" for this command. After the command has been triggered, it will not be allowed to be triggered again until the time specified has elapsed.

When you set the time, you can choose the time unit:
Msec: 0-86400000
sec: 0-86400
min: 0-1440
Only integers are allowed. You can't use the decimal point.
Note: There are 3 single actions at most to be executed for a single trigger condition.

4.5.1.3 IF Signal Is Weak

A command containing this IF condition will be triggered once the signal strength meets the specified requirements: the value of asu is 1-10.

![IF Signal Is Weak](image)

4.5.1.4 IF the Device Restarts

A command containing this IF condition will be triggered once the device has finished restarting.

![IF Device Restarts](image)

4.5.2 Supported THEN Actions

4.5.2.1 THEN Change Output

A command containing this action will change the selected output according to specified actions.

![THEN Change Output](image)

The user can choose from the following actions:
- Will be activated
- Will be deactivated
- Will follow the input: When the triggering condition is the input changes state, you can then select change state as the action.

![IF Input1](image)

![THEN Output1](image)
If the user has configured:
➢ "Delay Time", the selected output will be activated after the specified time.
➢ "Duration", the output will remain current status for a certain period of time.

4.5.2.2 THEN Restart the Device

A command containing this action will restart the Ursalink UC3x14 if the condition is met.

```
Then Restart the device
```

4.5.2.3 THEN Send an Alarm

A command containing this action will send an alarm message to server if the condition is met.

```
Then Send an alarm
```

4.6 Upgrade
Step 1: Connect UC3x14 to PC via the micro USB port.
Step 2: Power on UC3x14.
Step 3: Run the Ursalink ToolBox and go to "Upgrade".
Step 4: Click "Browse" and select the correct firmware file from the PC.
Step 5: Click "Upgrade" and the device will check if the firmware file is correct. If it's correct, the firmware will be imported to the device, and the device will restart after upgrading is completed.

Note: Any operation on Ursalink ToolBox is not allowed during upgrading, otherwise the upgrading will be interrupted, or even the device will break down.
Click "Reset", and the device will restore to the factory default settings.
5. Application Examples

5.1 Monitoring Alarm

In this case we need to monitor an alarm sensor, such as a manhole covers sensor or a water pressure sensor, UC3x14 will send out a message when any alarm occurs.

Hardware:
We connect the alarm output (12V signal that drives the siren) to one of the device's inputs. The positive wire from the alarm panel is connected to the IN1 terminal, and the negative wire is connected to IN1_COM.

Configuration:

Configuration via Ursalink Cloud:

<table>
<thead>
<tr>
<th>IF</th>
<th>Goes Active (rising edge-trigger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>ms</td>
</tr>
</tbody>
</table>

Set lockout time

Then

Send an alarm email
5.2 Control Appliances

5.2.1 Remotely Control a Bulb on Ursalink Cloud

In this case we need to turn on or off a 220 V light bulb on Ursalink Cloud.

Hardware:
We connect a light bulb to a 220V power source via the output 1 contact on UC3x14.

![Diagram of Ursalink Cloud and light bulb connection]

Operation:

![Interface Status with DL_1 and DO_1 indicators]

5.2.2 Send an Alert When Over-temperature Occurs

Configuration:

Hardware:
Configuration on Ursalink Cloud or Toolbox:

IF
- Input1
- Goes Active (rising edge-trigger)
- is continued for
- ms
- Set lockout time

Then
- Output1
- will be active
- Delay
- ms
- Duration
- ms

5.2.3 Turn on the Heater Regularly

Configuration:

Hardware:

[Diagram of hardware connections]
Configuration on Ursalink Cloud or Toolbox:

IF
- Time (zero time zone) ▼
- Every Day ▼
- 08 : 00

The action you have set will be triggered at 09:00 Every Day (based on the time zone you have set)

Then
- Output 1 ▼
- will be active ▼

- Delay 0 ms ▼

- Duration 30 min ▼

-END-